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This work deals with Thirring optical solitons in birefringent fibers with cubic-quintic nonlinearity. The vector coupled 
nonlinear Schrödinger equation for the propagation of Thirring optical solitons is studied analytically by the G’/G-expansion 
scheme. As a consequence, exact traveling wave solutions, along with the existence conditions, are reported. 
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1. Introduction 
 

Birefringence is a natural phenomenon that occurs in 

optical fibers [1-3], and the nonlinear dynamical model for 

the propagation of optical solitons in birefringent fibers is 

given by the vector coupled nonlinear Schrödinger 

equation (NLSE) [1-6]. When the cross-phase modulation 

(XPM) much more than the self phase modulation (SPM), 

i.e. SPM is negligible, the soliton in birefringent fibers is 

known as Thirring optical soliton, which is the product of 

perfect balance between XPM and group velocity 

dispersion (GVD) [7-10].  

Very recently, we investigated the dynamics of 

Thirring optical solitons in birefringent fibers with Kerr 

law and parabolic law nonlinearities, and obtained explicit 

Thirring bright, dark and singular solitons based on the 

sub-equations expansion approach, traveling wave 

hypothesis and the 
6P  model scheme [7-10]. However, 

the study of Thirring solitons is not comprehensive. In this 

paper, we will focus on the nonlinear dynamics of Thirring 

optical solitons with cubic-quintic (parabolic law) 

nonlinearity, and a new integration tool that is the G’/G-

expansion scheme [11-15] is applied to extract the 

traveling wave solutions. As a result, analytical Thirring 

dark and singular soliton solutions are derived. Hence, this 

work is an extension of our previous results. 

 

 

2. Governing equation 
 
In the presence of parabolic law nonlinearity and 

spatio-temporal dispersion (STD), the mathematical model 

for the propagating of Thirring optical solitons through 

birefringent fibers is given by the following vector coupled 

NLSE [8]:  
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where ),( txq  and ),( txr  represent the optical wave 

profiles of two split pulses, while x  and t  are the spatial 

and temporal variables.  

In Equations (1) and (2), the first, second and third 

terms represent the linear temporal evolution, GVD and 

STD, respectively. STD should be taken into account in 

order to make the dynamical model well-posed. In 

addition, the fourth and fifth terms are due to the parabolic 

law nonlinearity [16-30]. Here, la , lb  and lc  for 

2,1l  give the coefficients of GVD, STD and XPM, 

and finally ld  and le  terms account for the quintic 

nonlinearity.  

In our recent work [8], Equations (1) and (2) were 

solved analytically by the traveling wave hypothesis and 

the 
6P  model approach. This paper will employ a 

different way to integrate Equations (1) and (2). It is the 

G’/G-expansion scheme.  

 
 
3. Exact soliton solutions 
 
Firstly, we make the following traveling wave 

hypotheses [8]:  
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where )(),( vtxBtx   and 

llll txtx  ),( .  

In Equations (3) and (4), B  gives the inverse width, 

and v  is the velocity of two polarized solitons. For 
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2,1l , l , l  and l  represent frequencies, wave 

numbers and phase constants, respectively.  

Substituting the above hypotheses into Equations (1) 

and (2) yields 
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for 2,1l  and ll  3 .  

Equation (6) gives the velocity of two polarized 

solitons that poses a constraint condition 
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Below, Equation (5) will be integrated to obtain 

explicit traveling wave solutions by G’/G-expansion 

method.  

Based on the balancing principle, we assume that 

Equation (5) admits the traveling wave solution in the 

form 
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where lA  is a real constants to be determined later, and 

)(G  satisfies 
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where   and   are real constants.  

Substituting Equations (8) and (9) into Equations (5), 

and setting the coefficients of 

m

G

G







 

)(

)(




 

(
2

5
,

2

3
,

2

1
,

2

3
m ) to zero, we obtain a set of nonlinear 

algebraic equations 
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Solving the above nonlinear system yields 
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where  , l , l  and l  are real arbitrary constants.   

Equation (14) gives the amplitude of the two polarized 

solitons, which naturally introduces the restriction 
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Equation (15) gives the inverse width of the two 

polarized solitons that poses a constraint condition 
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Equation (17) gives other existence condition for the 

Thirring solitons.  

From Equation (16), exact solution to Equation (6) 

can be obtained, which is given by 
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where 0C  and 1C  are the integration constants.  

Finally, substituting Equations (8), (14), (15) and (20) 

into Equations (3) and (4), we get analytical traveling 

wave solutions to Equations (1) and (2) as follows:  
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where the speed of traveling wave solutions is given by 

Equation (6). The constraint conditions for the existence of 

those traveling waves (21) and (22) are given by Equations 

(7) and (17)-(19).  

Remark 1: If we take 10 CC  , traveling wave 

solutions (21) and (22) will become to the Thirring dark 

solitons 
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Remark 2: If we take 10 CC  , traveling wave 

solutions (21) and (22) will reduce to the Thirring singular 

solitons 
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4. Conclusion 
 

The vector coupled NLSE (1) and (2) that describes 

the propagation of Thirring optical solitons through 

birefringent fibers is investigated analytically. The cubic-

quintic nonlinearity and STD are taken into account. Via 

the G’/G-expansion approach, exact traveling wave 

solutions are obtained, which are given by Equations (21) 

and (22). Finally, we find that those traveling wave 

solutions will degenerate to Thirring dark and singular 

solitons by choosing appropriate parameter values of 1C  

and 2C . It should be noted that these results were not 

reported in our recent work.  

In future studies, we will use the complex envelope 

function ansatz to study the dynamics of Thirring combo-

solitons in birefringent fibers. The Kerr law and parabolic 

law will be discussed. These results will be reported later.   
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